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Abstract: This is well-known fact that the classical propositional calculus (zero-order logic, classical propositional logic), is 

the most fundamental two-valued logical system. This is required for construction of the classical calculus of quantifiers 

(classical calculus of predicates, first-order logic), which is necessary to construct the classical functional calculus. This last 

one is needed to formalize the Arithmetic System. At the beginning, we introduce a notation and we repeat some well-known 

notions (among others, the notions of: operation of consequence, a system, consistency in the traditional sense, consistency in 

the absolute sense). Next, we present the theorem saying that classical propositional calculus is an inconsistent theory. 

 

Key words: classical propositional calculus, consistency in the traditional sense, consistency in the absolute sense 

 

1. Introduction  
The symbols: →, ~, ∨, ∧, ≡ denote the connectives of implication, negation, disjunction, conjunction and 

equivalence, respectively. 𝒩 = {1,2, … } denotes the set of all natural numbers. 

Next, 𝐴𝑡0 = {𝑝1
1, 𝑝2

1, … , 𝑝1
2, 𝑝2

2, … , 𝑝1
𝑘 , 𝑝2

𝑘 , … } (𝑘 ∈ 𝒩) denotes the set of all propositional variables. The 

symbol 𝑆0 denotes the set of all well-formed formulas, which are built in the usual manner from propositional 

variables by means of logical connectives. Next, 𝑃0(𝜙) denotes the set of all propositional variables occurring in 

𝜙 (𝜙 ∈ 𝑆0).  

𝑅𝑆0
 denotes the set of all rules over 𝑆0. 𝐸(𝔐) is the set of all formulas valid in the matrix 𝔐. The symbol 𝔐2 

denotes the classical two-valued matrix and 𝑍2 is the set of all formulas valid in the matrix 𝔐2 (see [10],  

cf. [1 - 7], [11 - 13]). The symbols ⇒, ¬, 𝕍, &, ⇔, ∀, ∃ are metalogical symbols.  

    Next, 𝑆0
0 = {𝜙 ∈ 𝑆0: 𝜙 ∉ 𝑍2  &  ~𝜙 ∉ 𝑍2}.    

Next, 𝑟0 is the symbol of Modus Ponens in propositional calculus. Hence, 𝑅0 = {𝑟0}. The formula 𝑋 ⊂ 𝑌 

denotes that 𝑋 ⊆ 𝑌 and 𝑋 ≠ 𝑌. For any 𝑋 ⊆ 𝑆0 and 𝑅 ⊆ 𝑅𝑆0
, 𝐶𝑛(𝑅, 𝑋) is the smallest subset of 𝑆0, containing 𝑋, 

and closed under the rules belonging to 𝑅, where 𝑅 ⊆ 𝑅𝑆0
.  

 

The couple 〈𝑅, 𝑋〉 is called as a system, whenever 𝑅 ⊆ 𝑅𝑆0
, and 𝑋 ⊆ 𝑆0. Hence, 〈𝑅0, 𝑍2〉 denotes the system of 

the classical propositional calculus.   

 

Now we repeat some well-known definitions (see [10], cf. [5, 7 – 9, 11]). Let 𝑅 ⊆ 𝑅𝑆0
 and 𝑋 ⊆ 𝑆0. Then: 

 

Definition 1.1. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝑇  ⇔ (¬∃𝛼 ∈ 𝑆0) [𝛼 ∈ 𝐶𝑛(𝑅, 𝑋)  &  ~𝛼 ∈ 𝐶𝑛(𝑅, 𝑋)]. 
 

Definition 1.2. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝐴  ⇔ 𝐶𝑛(𝑅, 𝑋) ≠ 𝑆0. 

 

〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝑇 denotes that the system 〈𝑅, 𝑋〉 is consistent in the traditional sense. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝐴 denotes that   

the system 〈𝑅, 𝑋〉 is consistent in the absolute sense (see [10], cf. [11]). 

 

2. The Main Result 

 
Theorem.  〈𝑅0, 𝑍2〉 ∉ 𝐶𝑛𝑠𝑇. (see [15], cf. [14]). 

 

Proof. Elementary. 

                                                     □ 
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