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Article 

On the Inconsistency of: The Classical Propositional 
Calculus and Its Metatheory 

Ł. T. Stępień 

University of the National Education Commission, ul. Podchorazych 2, 30 - 084 Krakow, Poland 

Abstract: The classical propositional calculus (zero-order logic, classical propositional logic), is the most 
fundamental two-valued logical system. In this paper we present a proof of inconsistency of the classical 
propositional calculus. Then, we get right away the conclusion that the metatheory of the classical propositional 
calculus is inconsistent. 

Keywords: classical propositional calculus; zero-order logic; zeroth-order logic; consistency in the traditional 
sense; consistency in the absolute sense; inconsistency; metalogic; metatheory1 Introduction   
 

The issue, whether a given formal system is consistent, is the most fundamental issue for such 
system.  

Many people have been dealing with different aspects of consistency and/or inconsistency in 
and/or of formal logical systems or in and/or of mathematics or other sciences for e.g. 2-34,36,37,40-
51,55,57-63,65-67,70-83,87,88,91,93,94,98,102,105-107,109-113,115. 

Probably, the most known example of a system, which inconsistency was (correctly) proved, is 
Frege’s system presented in II volume of his “Grundgesetze der Arithmetik”. This inconsistency was 
proved by Russell in 1903 68 (cf. 13). 

The classical propositional calculus is necessary to construct the classical calculus of quantifiers 
(classical calculus of predicates, first-order logic), and this last one is necessary to construct the 
classical functional calculus. Classical functional calculus is needed to formalize the Arithmetic 
System. 

So, the significance of the issue of consistency or inconsistency of the classical propositional 
calculus, is obvious. 

One can also consider an impact of inconsistency (in a broad sense), not only on logical systems 
or on the branches of mathematics, but also on philosophy or semantics 81, and on some applications 
of logic in computer science 44, functionality of mind 52,56 or psychology 95. 

In 38 classical inconsistency of the best-known quantum logic (Birkhoff-von Neumann quantum 
logic), was discussed. 

In 49 Goddard claimed he had proved inconsistency of traditional logic (cf. 50). However, as he 
wrote this in his paper, in order to prove inconsistency, he considered there an extension of 
Aristotelian logic, by using negative terms, complex terms, quantified predicates, a theory of 
obversion etc. In contrary to him, we prove here inconsistency of pure classical propositional calculus 
(the details are given beneath). 

In 2010 Voevodsky delivered a talk entitled "What if current foundations of mathematics are 
inconsistent?" 108, where he focused on the issue of probably inconsistency of first-order Arithmetic 
System. In 2011 Nelson claimed he had proved inconsistency of the Arithmetic System, 26,76. 
However, soon Tao and Tausk found independently an error in Nelson’s proof mentioned above, 26. 
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Our paper concerns a more fundamental issue, namely inconsistency of the classical 
propositional calculus. The aim of this paper is to present a proof of the theorem that the classical 
propositional calculus (the zero-order logic, the classical propositional logic), is inconsistent in the 
traditional sense and in the absolute sense.  

This paper is organized as follows. In the section 2, we introduce a notation and we repeat certain 
well-known notions (among others, the notions: operation of consequence, a system, consistency in 
the traditional sense, consistency in the absolute sense) and some well-known theorems. In the next 
section, we prove some Lemma (Lemma 3.1). The section 4 includes a proof of inconsistency of 
classical propositional calculus (this result was announced in 99,100,101). The section 5 is devoted to 
some conclusions.  

2. Preliminaries 

The symbols: →, ~, ∨, ∧, ≡  denote the connectives of: implication, negation, disjunction, 
conjunction and equivalence, respectively. 𝒩 = {1,2, … } denotes the set of all natural numbers. 

Next, 𝐴𝑡0 = {𝑝, 𝑞, 𝑟, … 𝑝11, 𝑝21, … , 𝑝12, 𝑝22, … , 𝑝1𝑘, 𝑝2𝑘, … } , (where 𝑘 ∈ 𝒩 ), denotes the set of all 
propositional variables. The symbol 𝑆0 denotes the set of all well-formed formulas, which are built 
in the usual manner from propositional variables by means of logical connectives. We denote the 
well-formed formulas by small Greek letters (the subscripts, superscripts and/or accents can also be 
used). 

So, 𝑆0 = {𝛼, 𝛽, 𝛾, 𝛿, … , 𝜑 … , 𝛼0, 𝛿00, … }.  𝑅𝑆0 denotes the set of all rules over 𝑆0. 𝐸(𝔐) is the set of all formulas valid in the matrix 𝔐. 
The symbol 𝔐2 denotes the classical two-valued matrix and 𝑍2 is the set of all formulas valid in the 
matrix 𝔐2 (see 84, cf. 1,10,35,39,53,64,68,85,92,114).  

The symbols ⇒, ¬, 𝕍, &, ⇔, ∀, ∃  are metalogical symbols (they denote correspondingly: 
metaimplication, metanegation, metadisjunction, metaconjunction, metaequivalence and the 
metalogical quantifiers: general and existential one). 

Next, 𝑟0  is the symbol of Modus Ponens in the classical propositional calculus. Hence, 𝑅0 ={𝑟0} . The formula 𝑋 ⊂ 𝑌  denotes that 𝑋 ⊆ 𝑌  and 𝑋 ≠ 𝑌 . For any 𝑋 ⊆ 𝑆0  and 𝑅 ⊆ 𝑅𝑆0 , 𝐶𝑛(𝑅, 𝑋)  is 
the smallest subset of 𝑆0, containing 𝑋, and closed under the rules belonging to 𝑅, where 𝑅 ⊆ 𝑅𝑆0.  

The couple 〈𝑅, 𝑋〉 is called as a system, whenever 𝑅 ⊆ 𝑅𝑆0, and 𝑋 ⊆ 𝑆0. Thus, 〈𝑅0, 𝑍2〉 denotes 
the system of the classical propositional calculus (see 84,85). 

Now we repeat some well-known properties of operation of consequence and some well-known 
definitions (see 84, cf. 1,85,114). Let 𝑅 ⊆ 𝑅𝑆0 and 𝑋 ⊆ 𝑆0. Then: 𝑎1)  𝑋 ⊆ 𝐶𝑛(𝑅, 𝑋), 𝑎2)  𝑋 ⊆ 𝑌 ⇒ 𝐶𝑛(𝑅, 𝑋) ⊆ 𝐶𝑛(𝑅, 𝑌), 𝑎3)  𝑅 ⊆ 𝑅′ ⇒ 𝐶𝑛(𝑅, 𝑋) ⊆ 𝐶𝑛(𝑅′, 𝑋), 𝑎4)  𝐶𝑛(𝑅, 𝐶𝑛(𝑅, 𝑋)) ⊆ 𝐶𝑛(𝑅, 𝑋), 𝑎5)  𝐶𝑛(𝑅, 𝑋) = ⋃{𝐶𝑛(𝑅, 𝑌): 𝑌 ⊆ 𝑋  &  𝑌̿ < ℵ0}. 

Definition 1.1. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝑇  ⇔ (¬∃𝛼 ∈ 𝑆0)[𝛼 ∈ 𝐶𝑛(𝑅, 𝑋)  &  ~𝛼 ∈ 𝐶𝑛(𝑅, 𝑋)]. 
Definition 1.2. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝐴  ⇔ 𝐶𝑛(𝑅, 𝑋) ≠ 𝑆0. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝑇 denotes that the system 〈𝑅, 𝑋〉 is consistent in the traditional sense. 〈𝑅, 𝑋〉 ∈ 𝐶𝑛𝑠𝐴 

denotes that the system 〈𝑅, 𝑋〉  is consistent in the absolute sense or in Post’s sense (see 84, cf. 
85,86,114). 

Now we repeat some well-known basic Theorems, the so-called metatheorems. The first one is 
the so-called Deduction Theorem, sometimes called also as Tarski-Herbrand Theorem (see 84, cf. 
16,54,85,104): 

Theorem 1.1. (∀𝛼 ∈ 𝑆0)(∀𝛽 ∈ 𝑆0)(∀𝑋 ⊆ 𝑆0) [ 𝛽 ∈ 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝑋 ∪ {𝛼}) ⇒ (𝛼 → 𝛽) ∈ 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝑋)]. 
The two next metatheorems are correspondingly, the so-called Theorem on Consistency and 

Theorem on Inconsistency (see 84, cf. 16,54,85,89,104): 
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Theorem 1.2.(∀𝛼 ∈ 𝑆0)(∀𝑋 ⊆ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪      𝑋 ∪ {~𝛼}) ≠ 𝑆0  ⇔ 𝛼 ∉ 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝑋)]. 
Theorem 1.3.(∀𝛼 ∈ 𝑆0)(∀𝑋 ⊆ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪      𝑋 ∪ {𝛼}) = 𝑆0 ⇔ ~𝛼 ∈  𝐶𝑛(𝑅0, 𝑍2 ∪ 𝑋)]. 
At the end of this section we repeat the well-known theorems on consistency of the classical 

propositional calculus (see 84, cf. 85): 
Theorem 1.4. 〈𝑅0, 𝑍2〉 ∈ 𝐶𝑛𝑠𝑇. 
Theorem 1.5. 〈𝑅0, 𝑍2〉 ∈ 𝐶𝑛𝑠𝐴. 

3. A Lemma 

Lemma 3.1. (∀𝛼0 ∈ 𝐴1′ ) (∀ 𝛿00 ∈ 𝑆0) (∀𝛿 ∈ 𝑆0)  (∀𝜑 ∈ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪  {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}) = 𝑆0], 
where 𝐴∗ = {𝛼0 → (~𝛿00 → 𝜑)}, 𝐴∗∗ = {𝛿00 → 𝛿}, 𝐴1 = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪  {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}), 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪   {~𝛿00 → ~𝜑}). 

Proof. Let 

1) ¬(∀𝛼0 ∈ 𝐴1′ ) (∀ 𝛿00 ∈ 𝑆0) (∀𝛿 ∈ 𝑆0) (∀𝜑 ∈ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪  {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}) = 𝑆0], 
where 

2) 𝐴∗ = {𝛼0 → (~𝛿00 → 𝜑)}, 

3) 𝐴∗∗ = {𝛿00 → 𝛿}, 

4) 𝐴1 = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}), 

5) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪  {~𝛿00 → ~𝜑}). 

From 1) – 5), we get 

6) (∃𝛼0′ ∈ 𝐴1′ ) (∃𝛿00′ ∈ 𝑆0) (∃𝛿′ ∈ 𝑆0) (∃𝜑′ ∈ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪  {𝛼0′ → (𝛿00′ → ~𝛿′)} ∪ {~𝛿00′ → ~𝜑′}) ≠ 𝑆0], 
7) 𝐴∗ = {𝛼0′ → (~𝛿00′ → 𝜑′)}, 

8) 𝐴∗∗ = {𝛿00′ → 𝛿′}, 

9) 𝐴1 = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪ {𝛼0′ → (𝛿00′ → ~𝛿′)} ∪ {~𝛿00′ → ~𝜑′}), 

10) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0′ → (𝛿00′ → ~𝛿′)} ∪ 
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 {~𝛿00′ → ~𝜑′}). 

From 6) – 10), we obtain 

11) (∃𝛼0′ ∈ 𝐴1′ ) (∃𝛿00′ ∈ 𝑆0) (∃𝛿′ ∈ 𝑆0) (∃𝜑′ ∈ 𝑆0)[~𝛿00′ → 𝜑′, 𝛿00′ → 𝛿′, 𝛿00′ → ~𝛿′,  𝜑′ → 𝛿00′, 𝛿00′, 𝛿′, ~𝛿′ ∈ 𝐴1 & 𝐴1 = 𝑆0], 
where 

12) 𝐴∗ = {𝛼0′ → (~𝛿00′ → 𝜑′)}, 

13) 𝐴∗∗ = {𝛿00′ → 𝛿′}, 

14) 𝐴1 = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪ {𝛼0′ → (𝛿00′ → ~𝛿′)} ∪ {~𝛿00′ → ~𝜑′}), 

15) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0′ → (𝛿00′ → ~𝛿′)} ∪  {~𝛿00′ → ~𝜑′}), 

what contradicts the steps 6) – 10). 
□ 

4. The Main Result 

Theorem 4.1.: 〈𝑹𝟎, 𝒁𝟐〉 ∉ 𝑪𝒏𝒔𝑨. 
Proof.  

Let  

I) 〈𝑅0, 𝑍2〉 ∈ 𝐶𝑛𝑠𝐴. 
By Lemma 3.1, we have 

II) (∀𝛼0 ∈ 𝐴1′ ) (∀ 𝛿00 ∈ 𝑆0) (∀𝛿 ∈ 𝑆0) (∀𝜑 ∈ 𝑆0)[𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪  {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}) = 𝑆0],  

where 

III) 𝐴∗ = {𝛼0 → (~𝛿00 → 𝜑)} 

IV) 𝐴∗∗ = {𝛿00 → 𝛿} 

V) 𝐴1 = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗ ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑})  

VI) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}). 

Hence, by Theorem 1.3, we obtain 

VII) (∀𝛼0 ∈ 𝐴1′ ) (∀ 𝛿00 ∈ 𝑆0) (∀𝛿 ∈ 𝑆0) (∀𝜑 ∈ 𝑆0) [𝛼0, ~𝛿    00, ~𝜑 ∈  𝐶𝑛 (𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪  {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑})], 

where 

VIII) 𝐴∗∗ = {𝛿00 → 𝛿} 

IX) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛿00 → ~𝛿)} ∪ {~𝛿00 → ~𝜑}). 

From VII) – IX), by Duns-Scottus law (Ex Falso Quodlibet), we get 
X) (∀𝛼0 ∈ 𝐴1′ )[𝐴1′ = 𝑆0], 
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where 

XI) 𝐴∗∗ = {𝛼0 → 𝛼0} 

XII) 𝐴1′ = 𝐶𝑛(𝑅0, 𝑍2 ∪ 𝐴∗∗ ∪ {𝛼0 → (𝛼0 → ~𝛼0)} ∪ {~𝛼0 → ~𝛼0}), 
and where 

XIII) 𝛿00 ∈ {𝛼0} 

XIV) 𝛿 ∈ {𝛼0} 

XV) 𝜑 ∈ {𝛼0}. 
Hence, we get 
XVI) (∀𝛼0 ∈ 𝑆0) [𝐶𝑛(𝑅0, 𝑍2 ∪ {𝛼0 → (𝛼0 → ~𝛼0)}) = 𝑆0]. 
Then, from XVI), by Theorem 1.3. we obtain 

XVII) (∀𝛼0 ∈ 𝑆0)[𝛼0 ∈ 𝐶𝑛(𝑅0, 𝑍2)]. 
Hence, by Definition 1.1, we have 

XVIII) 〈𝑅0, 𝑍2〉 ∉ 𝐶𝑛𝑠𝑇 , 
when 

XIX) 𝛼0 ∈ {𝑝 ∧ ∼ 𝑝}. 
Then, by Duns-Scottus law (Ex Falso Quodlibet), and from the fact that 𝐶𝑛(𝑅0, 𝑍2) ⊆ 𝑆0, we have  

XX) 𝐶𝑛(𝑅0, 𝑍2) = 𝑆0. 
Hence, from Definition 1.2, we get 
XXI) 〈𝑅0, 𝑍2〉 ∉ 𝐶𝑛𝑠𝐴, 
what contradicts the step I).                       □ 

5. Conclusions 

If we formulate certain analogon of Definition 1.1. for the case of metatheory of the classical 
propositional calculus, then from Theorem 4.1. and from Theorem 1.5., we get right away the 
following conclusion (cf. 32): 

Theorem 5.1: The metatheory of the classical propositional calculus is inconsistent. 
Let’s notice that if one uses only the truth tables, and checks, whether a given formula is a 

(contr)tautology, then the classical propositional calculus seems to work properly i.e. there is not any 
contradiction, at least at first sight. The same situation is, when we obtain new laws of the classical 
propositional calculus, using only the inference rules and the set of axioms.  

There in 111 the question on necessity of assumption of truth tables consistency had been asked, 
and there appearing of the inconsistency, in the context of the truth tables, was demonstrated (as the 
Authors of 111 have established there), by using the case of liar paradox. In this paper mentioned 
above, a construction of truth tables in a consistency-independent paraconsistent setting was 
presented. The Authors of 111 had been working there just using paraconsistent metatheory. On the 
other hand, there in 103 were presented some arguments against classical paraconsistent metatheory. 

Anyway, we would like to stress here that we have not used any truth tables in this current 
paper. In the steps XVIII) – XIX) of the proof of the Main Result, we have obtained that the classical 
propositional calculus is inconsistent in the traditional sense, when 𝛼0 ∈ {𝑝 ∧ ∼ 𝑝} (so, 𝛼0 is some 
contrtautology), however any liar paradox has not been involved here. We have applied: some laws 
of the classical propositional calculus, Modus Ponens rule 𝑟0 , Theorem 1.3, Definition 1.1. and 
Definition 1.2. 

Some remarks on the case of inconsistent metatheory, are included in 59,88 and 110 
(inconsistency of the so-called Nudelman’s metatheory, was proved in 45). 
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