On the Inconsistency of Classical Logic

Teodor J. Stępień, Łukasz T. Stępień

The Pedagogical University of Cracow, Kraków, ul. Podchorążych 2, 30-084, Poland, email:<u>sfstepie@cyf-kr.edu.pl</u>, <u>lukasz.stepien@up.krakow.pl</u>

Abstract: This is well-known fact that the classical propositional calculus (zero-order logic, classical propositional logic), is the most fundamental two-valued logical system. This is required for construction of the classical calculus of quantifiers (classical calculus of predicates, first-order logic), which is necessary to construct the classical functional calculus. This last one is needed to formalize the Arithmetic System. At the beginning, we introduce a notation and we repeat some well-known notions (among others, the notions of: operation of consequence, a system, consistency in the traditional sense, consistency in the absolute sense). Next, we present the theorem saying that classical propositional calculus is an inconsistent theory.

Key words: classical propositional calculus, consistency in the traditional sense, consistency in the absolute sense

1. Introduction

The symbols: \rightarrow , \sim , V, \wedge , \equiv denote the connectives of implication, negation, disjunction, conjunction and equivalence, respectively. $\mathcal{N} = \{1, 2, ...\}$ denotes the set of all natural numbers.

Next, $At_0 = \{p_1^1, p_2^1, ..., p_1^2, p_2^2, ..., p_1^k, p_2^k, ...\}$ $(k \in \mathcal{N})$ denotes the set of all propositional variables. The symbol S_0 denotes the set of all well-formed formulas, which are built in the usual manner from propositional variables by means of logical connectives. Next, $P_0(\phi)$ denotes the set of all propositional variables occurring in ϕ ($\phi \in S_0$).

 R_{S_0} denotes the set of all rules over S_0 . $E(\mathfrak{M})$ is the set of all formulas valid in the matrix \mathfrak{M} . The symbol \mathfrak{M}_2 denotes the classical two-valued matrix and Z_2 is the set of all formulas valid in the matrix \mathfrak{M}_2 (see [10], cf. [1 - 7], [11 - 13]). The symbols \Rightarrow , \neg , \mathbb{V} , &, \Leftrightarrow , \forall , \exists are metalogical symbols.

Next, $S_0^0 = \{ \phi \in S_0 : \phi \notin Z_2 \& \neg \phi \notin Z_2 \}.$

Next, r_0 is the symbol of Modus Ponens in propositional calculus. Hence, $R_0 = \{r_0\}$. The formula $X \subset Y$ denotes that $X \subseteq Y$ and $X \neq Y$. For any $X \subseteq S_0$ and $R \subseteq R_{S_0}$, Cn(R, X) is the smallest subset of S_0 , containing X, and closed under the rules belonging to R, where $R \subseteq R_{S_0}$.

The couple $\langle R, X \rangle$ is called as a system, whenever $R \subseteq R_{S_0}$, and $X \subseteq S_0$. Hence, $\langle R_0, Z_2 \rangle$ denotes the system of the classical propositional calculus.

Now we repeat some well-known definitions (see [10], cf. [5, 7 – 9, 11]). Let $R \subseteq R_{S_0}$ and $X \subseteq S_0$. Then:

Definition 1.1. $(R, X) \in Cns^T \iff (\neg \exists \alpha \in S_0) [\alpha \in Cn(R, X) \& \neg \alpha \in Cn(R, X)].$

Definition 1.2. $\langle R, X \rangle \in Cns^A \iff Cn(R, X) \neq S_0$.

 $\langle R, X \rangle \in Cns^T$ denotes that the system $\langle R, X \rangle$ is consistent in the traditional sense. $\langle R, X \rangle \in Cns^A$ denotes that the system $\langle R, X \rangle$ is consistent in the absolute sense (see [10], cf. [11]).

2. The Main Result

Theorem. $\langle R_0, Z_2 \rangle \notin Cns^T$. (see [15], cf. [14]).

Proof. Elementary.

References

- [1] Andrews P. B. *An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof.* Applied Logic Series, Vol. 27, Springer Science + Business Media Dordrecht 2002.
- [2] Ben-Ari M. *Mathematical Logic for Computer Science*. Springer-Verlag, London 2012.
- [3] van Dalen D. Logic and Structure. Springer-Verlag, Berlin Heidelberg 2008.
- [4] Ershov Y. L. and Palyutin E. A. Mathematical Logic. Translated by Shokurov V. Mir Publishers, Moscow 1984.
- [5] Grzegorczyk A. An Outline of Mathematical Logic: Fundamental Results and Notions Explained with All Details. Translated by Wojtasiewicz O. and Zawadowski W. Synthese Library, Vol. 70, D. Reidel Publishing Company, Dordrecht-Holland/Boston-USA, PWN, Warszawa 1974.
- [6] Lassaigne R. and de Rougemont M. Logic and Complexity. Springer-Verlag, London 2004.
- [7] Marciszewski W. "Sentence Logic." In: Dictionary of Logic as Applied in the Study of Language. Concepts/Methods/Theories, edited by Marciszewski W., 334 – 342. Nijhoff International Philosophy Series, Vol. 9, Springer Science + Business Media Dordrecht 1981.
- [8] Nickles T. "From Copernicus to Ptolemy: Inconsistency and Method". In: *Inconsistency in Science*, Meheus J. (Ed.), 1 –
 33. ORIGINS: Studies in the sources of scientific creativity, Vol. 2, Springer Science + Business Media Dordrecht 2002.
- [9] Perzanowski J. "Parainconsistency, or Inconsistency Tamed, Investigated and Exploited.", *Logic and Logical Philosophy*, Vol. 9, 5-24 (2001).
- [10] Pogorzelski W. A. The Classical Propositional Calculus. PWN, Warszawa 1975.
- [11] Pogorzelski W. A. and Wojtylak P. *Completeness Theory for Propositional Logics*. Birkhäuser-Verlag AG, Basel Boston Berlin 2008.
- [12] Rautenberg W. A Concise Introduction to Mathematical Logic. Springer Science + Business Media, LLC 2010.
- [13] Srivastava S. M. A Course on Mathematical Logic. Springer Science + Business Media, LLC 2008.
- [14] Stępień T. J. and Stępień Ł. T. "Theorem on Inconsistency of the Classical Logic." In: Conference Proceedings, Paris France Sep 21-22, 2017, 19(9) Part XIII, p.1558, World Academy of Science, Engineering and Technology (2017).
- [15] Stępień T. J. and Stępień Ł. T. "On the Inconsistency of Classical Propositional Calculus", Journal of Mathematics and System Science, vol. 10, No. 1, 13 - 14 (2020).